
Coding Conventions
The following style guide describes the coding conventions used for the source code of the
jTNC library and the demonstrator of a smart metering system. For the creation of this style
guide, the Google Java Style was used as basis. The Google Java Style can be found at
https://code.google.com/p/google-styleguide/ and is licensed under the CC BY 3.0 License1.
The changes that are made to adjust the Google Style Guide are licensed under the CC-BY 4.0
License2, while the unchanged parts remain licensed as parts of the original Google Style
Guide.

1 Terminology notes

In this document, unless otherwise clarified:

1. The term class is used inclusively to mean an "ordinary" class, enum class, interface
or annotation type (@interface).

2. The term comment always refers to implementation comments. We do not use the
phrase "documentation comments", instead using the common term "Javadoc."

Other "terminology notes" will appear occasionally throughout the document.

2 Source file basics

2.1 File name

The source file name consists of the case-sensitive name of the top-level class it contains, plus
the .java extension.

2.2 File encoding: UTF-8

Source files are encoded in UTF-8.

2.3 Whitespace characters

Aside from the line terminator sequence, the ASCII horizontal space character (0x20) is the
only whitespace character that appears anywhere in a source file. This implies that:

1. All other whitespace characters in string and character literals are escaped.

2. Tab characters are not used for indentation.

2.3.1 Special escape sequences

1http://creativecommons.org/licenses/by/3.0/

2http://creativecommons.org/licenses/by/4.0/

For any character that has a special escape sequence (\b, \t, \n, \f, \r, \", \' and \\), that
sequence is used rather than the corresponding octal (e.g. \012) or Unicode (e.g. \u000a)
escape.

2.3.2 Non-ASCII characters

For the remaining non-ASCII characters, either the actual Unicode character (e.g. ∞) or the
equivalent Unicode escape (e.g. \u221e) is used, depending only on which makes the code
easier to read and understand.

Tip: In the Unicode escape case, and occasionally even when actual Unicode characters are
used, an explanatory comment can be very helpful.

3 Source file structure

A source file consists of, in order:

1. License or copyright information, if present

2. Import statements

3. Exactly one top-level class

3.1 License or copyright information, if present

If license or copyright information belongs in a file, it belongs here.

3.2 Import statements

3.2.1 No wildcard imports

Wildcard imports, static or otherwise, are not used.

3.2.2 Ordering and spacing

Import statements are divided into groups by top level package. Each groups is separated by a
single blank line.

3.3 Class declaration

3.3.1 Exactly one top-level class declaration

Each top-level class resides in a source file of its own.

3.3.2 Class member ordering

The ordering of the members of a class can have a great effect on learnability, but there is no
single correct recipe for how to do it. Different classes may order their members differently.

What is important is that each class order its members in some logical order, which its
maintainer could explain if asked. For example, new methods are not just habitually added to
the end of the class, as that would yield "chronological by date added" ordering, which is not
a logical ordering.

3.3.3 Overloads: never split

When a class has multiple constructors, or multiple methods with the same name, these
appear sequentially, with no intervening members.

3.4 package-info.java

Every Java package contains a package-info.java file. The file does not contain a class.
Instead it must consist of the following in order:

1. License or copyright information, if present

2. Package statement

3. Import statements

The conventions for formatting and documentation and so on with in this document apply to
the listed elements as to the source files that contain a Java class.

4 Formatting

Terminology Note: block-like construct refers to the body of a class, method or constructor.
Note that, by the section on array initializers, any array initializer may optionally be treated as
if it were a block-like construct.

4.1 Braces

4.1.1 Braces are used where optional

Braces are used with if, else, for, do and while statements, even when the body is empty or
contains only a single statement.

4.1.2 Nonempty blocks: K & R style

Braces follow the Kernighan and Ritchie style ("Egyptian brackets3") for nonempty blocks
and block-like constructs:

• No line break before the opening brace.

• Line break after the opening brace.

• Line break before the closing brace.

• Line break after the closing brace if that brace terminates a statement or the body of a
method, constructor or named class. For example, there is no line break after the brace
if it is followed by else or a comma.

3http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html

Example:
return new MyClass() {
 @Override
 public void method() {
 if (condition()) {
 try {
 something();
 } catch (ProblemException e) {
 recover();
 }
 }
 }
};

A few exceptions for enum classes are given in the section about Enum classes.

4.1.3 Empty blocks: may be concise

An empty block or block-like construct may be closed immediately after it is opened, with no
characters or line break in between ({}), unless it is part of a multi-block statement (one that
directly contains multiple blocks: if/else-if/else or try/catch/finally).

Example:
 void doNothing() {}

4.2 Block indentation: +4 spaces

Each time a new block or block-like construct is opened, the indent increases by four spaces.
When the block ends, the indent returns to the previous indent level. The indent level applies
to both code and comments throughout the block. (See the example in the section about
Nonempty blocks: K & R Style.)

4.3 One statement per line

Each statement is followed by a line-break.

4.4 Column limit: 80

Projects have to use a column limit of 80 characters. Except as noted below, any line that
would exceed this limit must be line-wrapped, as explained in the section Line-wrapping.

Exceptions:

1. Lines where obeying the column limit is not possible (for example, a long URL in
Javadoc, or a long JSNI method reference).

4.5 Line-wrapping

Terminology Note: When code that might otherwise legally occupy a single line is divided
into multiple lines, typically to avoid overflowing the column limit, this activity is called
line-wrapping.

There is no comprehensive, deterministic formula showing exactly how to line-wrap in every
situation. Very often there are several valid ways to line-wrap the same piece of code.

Tip: Extracting a method or local variable may solve the problem without the need to
line-wrap.

4.5.1 Where to break

The prime directive of line-wrapping is: prefer to break at a higher syntactic level. Also:

1. When a line is broken at a non-assignment operator the break comes before the
symbol.

o This also applies to the following "operator-like" symbols: the dot separator
(.), the ampersand in type bounds (<T extends Foo & Bar>), and the pipe in
catch blocks (catch (FooException | BarException e)).

2. When a line is broken at an assignment operator the break typically comes after the
symbol, but either way is acceptable.

o This also applies to the "assignment-operator-like" colon in an enhanced for
("foreach") statement.

3. A method or constructor name stays attached to the open parenthesis (() that follows
it.

4. A comma (,) stays attached to the token that precedes it.

4.5.2 Indent continuation lines at least +4 spaces

When line-wrapping, each line after the first (each continuation line) is indented at least +2
from the original line.

When there are multiple continuation lines, indentation may be varied beyond +2 as desired.
In general, two continuation lines use the same indentation level if and only if they begin with
syntactically parallel elements.

The section on Horizontal alignment addresses the discouraged practice of using a variable
number of spaces to align certain tokens with previous lines.

4.6 Whitespace

4.6.1 Vertical Whitespace

A single blank line appears:

1. Between consecutive members (or initializers) of a class: fields, constructors, methods,
nested classes, static initializers, instance initializers.

o Exception: A blank line between two consecutive fields (having no other code
between them) is optional. Such blank lines are used as needed to create
logical groupings of fields.

2. Within method bodies, as needed to create logical groupings of statements.

3. Optionally before the first member or after the last member of the class (neither
encouraged nor discouraged).

4. As required by other sections of this document (such as the section about Import
statements).

Multiple consecutive blank lines are permitted, but never required (or encouraged).

4.6.2 Horizontal whitespace

Beyond where required by the language or other style rules, and apart from literals, comments
and Javadoc, a single ASCII space also appears in the following places only.

1. Separating any reserved word, such as if, for or catch, from an open parenthesis (()
that follows it on that line

2. Separating any reserved word, such as else or catch, from a closing curly brace (})
that precedes it on that line

3. Before any open curly brace ({), with two exceptions:

o @SomeAnnotation({a, b}) (no space is used)

o String[][] x = {{"foo"}}; (no space is required between {{, by item 8
below)

4. On both sides of any binary or ternary operator. This also applies to the following
"operator-like" symbols:

o the ampersand in a conjunctive type bound: <T extends Foo & Bar>

o the pipe for a catch block that handles multiple exceptions: catch
(FooException | BarException e)

o the colon (:) in an enhanced for ("foreach") statement

5. After ,:; or the closing parenthesis ()) of a cast

6. On both sides of the double slash (//) that begins an end-of-line comment. Here,
multiple spaces are allowed, but not required.

7. Between the type and variable of a declaration: List<String> list

8. Optional just inside both braces of an array initializer

o new int[] {5, 6} and new int[] { 5, 6 } are both valid

Note: This rule never requires or forbids additional space at the start or end of a line, only
interior space.

4.6.3 Horizontal alignment: never required

Terminology Note: Horizontal alignment is the practice of adding a variable number of
additional spaces in your code with the goal of making certain tokens appear directly below
certain other tokens on previous lines.

This practice is permitted, but is never required by this style guide. It is not even required to
maintain horizontal alignment in places where it was already used.

Here is an example without alignment, then using alignment:
private int x; // this is fine
private Color color; // this too

private int x; // permitted, but future edits
private Color color; // may leave it unaligned

Tip: Alignment can aid readability, but it creates problems for future maintenance. Consider a
future change that needs to touch just one line. This change may leave the formerly-pleasing
formatting mangled, and that is allowed. More often it prompts the coder (perhaps you) to
adjust whitespace on nearby lines as well, possibly triggering a cascading series of
reformattings. That one-line change now has a "blast radius." This can at worst result in

pointless busywork, but at best it still corrupts version history information, slows down
reviewers and exacerbates merge conflicts.

4.7 Grouping parentheses: recommended

Optional grouping parentheses are omitted only when author and reviewer agree that there is
no reasonable chance the code will be misinterpreted without them, nor would they have
made the code easier to read. It is not reasonable to assume that every reader has the entire
Java operator precedence table memorized.

4.8 Specific constructs

4.8.1 Enum classes

After each comma that follows an enum constant, a line-break is optional.

An enum class with no methods and no documentation on its constants may optionally be
formatted as if it were an array initializer (see section on array initializers).
private enum Suit { CLUBS, HEARTS, SPADES, DIAMONDS }

Since enum classes are classes, all other rules for formatting classes apply.

4.8.2 Variable declarations

4.8.2.1 One variable per declaration

Every variable declaration (field or local) declares only one variable: declarations such as int
a, b; are not used.

4.8.2.2 Declared when needed, initialized as soon as possible

Local variables are not habitually declared at the start of their containing block or block-like
construct. Instead, local variables are declared close to the point they are first used (within
reason), to minimize their scope. Local variable declarations typically have initializers, or are
initialized immediately after declaration.

4.8.3 Arrays

4.8.3.1 Array initializers: can be "block-like"

Any array initializer may optionally be formatted as if it were a "block-like construct." For
example, the following are all valid (not an exhaustive list):
new int[] { new int[] {
 0, 1, 2, 3 0,
} 1,
 2,
new int[] { 3,
 0, 1, }
 2, 3
} new int[]
 {0, 1, 2, 3}

4.8.3.2 No C-style array declarations

The square brackets form a part of the type, not the variable: String[] args, not String
args[].

4.8.4 Switch statements

Terminology Note: Inside the braces of a switch block are one or more statement groups. Each
statement group consists of one or more switch labels (either case FOO: or default:),
followed by one or more statements.

4.8.4.1.1 Indentation

As with any other block, the contents of a switch block are indented +4.

After a switch label, a newline appears, and the indentation level is increased +4, exactly as if
a block were being opened. The following switch label returns to the previous indentation
level, as if a block had been closed.

4.8.4.1.2 Fall-through: commented

Within a switch block, each statement group either terminates abruptly (with a break,
continue, return or thrown exception), or is marked with a comment to indicate that
execution will or might continue into the next statement group. Any comment that
communicates the idea of fall-through is sufficient (typically // fall through). This special
comment is not required in the last statement group of the switch block. Example:
switch (input) {
 case 1:
 case 2:
 prepareOneOrTwo();
 // fall through
 case 3:
 handleOneTwoOrThree();
 break;
 default:
 handleLargeNumber(input);
}

4.8.4.1.3 The default case is present

Each switch statement includes a default statement group, even if it contains no code.

4.9 Annotations

Annotations applying to a class, method or constructor appear immediately after the
documentation block, and each annotation is listed on a line of its own (that is, one annotation
per line). These line breaks do not constitute line-wrapping (section on Line-wrapping), so the
indentation level is not increased. Example:
@Override
@Nullable
public String getNameIfPresent() { ... }

There are no specific rules for formatting parameter and local variable annotations.

4.10 Comments

4.10.1 Block comment style

Block comments are indented at the same level as the surrounding code. They may be in
/* ... */ style or // ... style. However the /* ... */ should be preferred. For multi-line
/* ... */ comments, subsequent lines must start with * aligned with the * on the previous
line.
/*
 * This is // And so /* Or you can
 * okay. // is this. * even do this. */
 */

Comments are not enclosed in boxes drawn with asterisks or other characters.

Tip: When writing multi-line comments, use the /* ... */ style if you want automatic code
formatters to re-wrap the lines when necessary (paragraph-style). Most formatters don't
re-wrap lines in // ... style comment blocks.

4.11 Modifiers

Class and member modifiers, when present, appear in the order recommended by the Java
Language Specification:
public protected private abstract static final transient volatile
synchronized native strictfp

4.12 Numeric Literals

long-valued integer literals use an uppercase L suffix, never lowercase (to avoid confusion
with the digit 1). For example, 3000000000L rather than 3000000000l.

5 Naming

5.1 Rules common to all identifiers

Identifiers use only ASCII letters and digits, and in two cases noted below, underscores. Thus
each valid identifier name is matched by the regular expression \w+ .

In this style special prefixes or suffixes, like those seen in the examples name_, mName,
s_name and kName, are not used.

5.2 Rules by identifier type

5.2.1 Package names

Package names are all lowercase, with consecutive words simply concatenated together (no
underscores). For example, com.example.deepspace, not com.example.deepSpace or
com.example.deep_space.

5.2.2 Class names

Class names are written in UpperCamelCase

Class names are typically nouns or noun phrases. For example, Character or ImmutableList.
Interface names may also be nouns or noun phrases (for example, List), but may sometimes
be adjectives or adjective phrases instead (for example, Readable).

There are no specific rules or even well-established conventions for naming annotation types.

Test classes are named starting with the name of the class they are testing, and ending with
Test. For example, HashTest or HashIntegrationTest. If they cannot be associated with only
one class the class should be named according to its test purpose ending with Test.

5.2.3 Method names

Method names are written in lowerCamelCase.

Method names are typically verbs or verb phrases. For example, sendMessage or stop.

5.2.4 Constant names

Constant names use CONSTANT_CASE: all uppercase letters, with words separated by
underscores. But what is a constant, exactly?

Every constant is a static final field, but not all static final fields are constants. Before
choosing constant case, consider whether the field really feels like a constant. For example, if
any of that instance's observable state can change, it is almost certainly not a constant. Merely
intending to never mutate the object is generally not enough. Examples:
// Constants
static final int NUMBER = 5;
static final ImmutableList<String> NAMES = ImmutableList.of("Ed", "Ann");
static final Joiner COMMA_JOINER = Joiner.on(','); // because Joiner is
immutable
static final SomeMutableType[] EMPTY_ARRAY = {};
enum SomeEnum { ENUM_CONSTANT }

// Not constants
static String nonFinal = "non-final";
final String nonStatic = "non-static";
static final Set<String> mutableCollection = new HashSet<String>();
static final ImmutableSet<SomeMutableType> mutableElements =
ImmutableSet.of(mutable);
static final Logger logger = Logger.getLogger(MyClass.getName());
static final String[] nonEmptyArray = {"these", "can", "change"};

These names are typically nouns or noun phrases.

5.2.5 Non-constant field names

Non-constant field names (static or otherwise) are written in lowerCamelCase.

These names are typically nouns or noun phrases. For example, computedValues or index.

5.2.6 Parameter names

Parameter names are written in lowerCamelCase

One-character parameter names should be avoided.

5.2.7 Local variable names

Local variable names are written in lowerCamelCase, and can be abbreviated more liberally
than other types of names.

However, one-character names should be avoided, except for temporary and looping
variables.

Even when final and immutable, local variables are not considered to be constants, and should
not be styled as constants.

5.2.8 Type variable names

Each type variable is named in one of two styles:

• A single capital letter, optionally followed by a single numeral (such as E, T, X, T2)

• A name in the form used for classes (see section Class names), followed by the capital
letter T (examples: RequestT, FooBarT).

5.3 Camel case: defined

Sometimes there is more than one reasonable way to convert an English phrase into camel
case, such as when acronyms or unusual constructs like "IPv6" or "iOS" are present. To
improve predictability, Google Style specifies the following (nearly) deterministic scheme.

Beginning with the prose form of the name:

1. Convert the phrase to plain ASCII and remove any apostrophes. For example,
"Müller's algorithm" might become "Muellers algorithm".

2. Divide this result into words, splitting on spaces and any remaining punctuation
(typically hyphens).

o Recommended: if any word already has a conventional camel-case appearance
in common usage, split this into its constituent parts (e.g., "AdWords" becomes
"ad words"). Note that a word such as "iOS" is not really in camel case per se;
it defies any convention, so this recommendation does not apply.

3. Now lowercase everything (including acronyms), then uppercase only the first
character of:

o ... each word, to yield upper camel case, or

o ... each word except the first, to yield lower camel case

4. Finally, join all the words into a single identifier.

Note that the casing of the original words is almost entirely disregarded. Examples:

Prose form Correct Incorrect

"XML HTTP request" XmlHttpRequest XMLHTTPRequest

"new customer ID" newCustomerId newCustomerID

"inner stopwatch" innerStopwatch innerStopWatch

"supports IPv6 on
iOS?"

supportsIpv6OnIos supportsIPv6OnIOS

"YouTube importer"
YouTubeImporter
YoutubeImporter*

*Acceptable, but not recommended.

Note: Some words are ambiguously hyphenated in the English language: for example
"nonempty" and "non-empty" are both correct, so the method names checkNonempty and
checkNonEmpty are likewise both correct.

6 Programming Practices

6.1 @Override: always used

A method is marked with the @Override annotation whenever it is legal. This includes a class
method overriding a superclass method, a class method implementing an interface method,
and an interface method respecifying a superinterface method.

6.2 Caught exceptions: not ignored

Except as noted below, it is very rarely correct to do nothing in response to a caught
exception. (Typical responses are to log it, or if it is considered "impossible", rethrow it as an
AssertionError.)

When it truly is appropriate to take no action whatsoever in a catch block, the reason this is
justified is explained in a comment.
try {
 int i = Integer.parseInt(response);
 return handleNumericResponse(i);
} catch (NumberFormatException ok) {
 // it's not numeric; that's fine, just continue
}
return handleTextResponse(response);

Exception: In tests, a caught exception may be ignored without comment if it is named
expected. The following is a very common idiom for ensuring that the method under test
does throw an exception of the expected type, so a comment is unnecessary here.
try {
 emptyStack.pop();
 fail();
} catch (NoSuchElementException expected) {
}

6.3 Static members: qualified using class

When a reference to a static class member must be qualified, it is qualified with that class's
name, not with a reference or expression of that class's type.
Foo aFoo = ...;
Foo.aStaticMethod(); // good
aFoo.aStaticMethod(); // bad

somethingThatYieldsAFoo().aStaticMethod(); // very bad

6.4 Finalizers: not used

It is extremely rare to override Object.finalize.

Tip: Don't do it. If you absolutely must, be sure you understand what to do.

7 Javadoc

7.1 Formatting

7.1.1 General form

The basic formatting of Javadoc blocks is as seen in this example:
/**
 * Multiple lines of Javadoc text are written here,
 * wrapped normally...
 */
public int method(String p1) { ... }

... or in this single-line example:
/** An especially short bit of Javadoc. */

The basic form is always acceptable. The single-line form may be substituted when there are
no at-clauses present, and the entirety of the Javadoc block (including comment markers) can
fit on a single line.

7.1.2 Paragraphs

One blank line—that is, a line containing only the aligned leading asterisk (*)—appears
between paragraphs, and before the group of "at-clauses" if present.

7.1.3 At-clauses

Any of the standard "at-clauses" that are used appear in the order @param, @return, @throws,
@deprecated, and these four types never appear with an empty description.

7.2 The summary fragment

The Javadoc for each class and member begins with a brief summary fragment. This fragment
is very important: it is the only part of the text that appears in certain contexts such as class
and method indexes.

This is a fragment—a noun phrase or verb phrase, not a complete sentence. It may not begin
with A {@code Foo} is a..., or This method returns..., nor does it form a complete
imperative sentence like Save the record.. However, the fragment is capitalized and
punctuated as if it were a complete sentence.

Tip: A common mistake is to write simple Javadoc in the form /** @return the customer
ID */. This is incorrect, and should be changed to /** Returns the customer ID. */.

7.3 Where Javadoc is used

At the minimum, Javadoc is present for every public class, and every public or protected
member method of such a class, with a few exceptions noted below.

Other classes and members still have Javadoc as needed. Whenever an implementation
comment would be used to define the overall purpose or behavior of a class, method or field,
that comment is written as Javadoc instead. (It's more uniform, and more tool-friendly.)

7.3.1 Exception: overrides

Javadoc is not always present on a method that overrides a supertype method.

	1 Terminology notes
	2 Source file basics
	2.1 File name
	2.2 File encoding: UTF-8
	2.3 Whitespace characters
	2.3.1 Special escape sequences
	2.3.2 Non-ASCII characters

	3 Source file structure
	3.1 License or copyright information, if present
	3.2 Import statements
	3.2.1 No wildcard imports
	3.2.2 Ordering and spacing

	3.3 Class declaration
	3.3.1 Exactly one top-level class declaration
	3.3.2 Class member ordering
	3.3.3 Overloads: never split

	3.4 package-info.java

	4 Formatting
	4.1 Braces
	4.1.1 Braces are used where optional
	4.1.2 Nonempty blocks: K & R style
	4.1.3 Empty blocks: may be concise

	4.2 Block indentation: +4 spaces
	4.3 One statement per line
	4.4 Column limit: 80
	4.5 Line-wrapping
	4.5.1 Where to break
	4.5.2 Indent continuation lines at least +4 spaces

	4.6 Whitespace
	4.6.1 Vertical Whitespace
	4.6.2 Horizontal whitespace
	4.6.3 Horizontal alignment: never required

	4.7 Grouping parentheses: recommended
	4.8 Specific constructs
	4.8.1 Enum classes
	4.8.2 Variable declarations
	4.8.2.1 One variable per declaration
	4.8.2.2 Declared when needed, initialized as soon as possible

	4.8.3 Arrays
	4.8.3.1 Array initializers: can be "block-like"
	4.8.3.2 No C-style array declarations

	4.8.4 Switch statements
	4.8.4.1.1 Indentation
	4.8.4.1.2 Fall-through: commented
	4.8.4.1.3 The default case is present

	4.9 Annotations
	4.10 Comments
	4.10.1 Block comment style

	4.11 Modifiers
	4.12 Numeric Literals

	5 Naming
	5.1 Rules common to all identifiers
	5.2 Rules by identifier type
	5.2.1 Package names
	5.2.2 Class names
	5.2.3 Method names
	5.2.4 Constant names
	5.2.5 Non-constant field names
	5.2.6 Parameter names
	5.2.7 Local variable names
	5.2.8 Type variable names

	5.3 Camel case: defined

	6 Programming Practices
	6.1 @Override: always used
	6.2 Caught exceptions: not ignored
	6.3 Static members: qualified using class
	6.4 Finalizers: not used

	7 Javadoc
	7.1 Formatting
	7.1.1 General form
	7.1.2 Paragraphs
	7.1.3 At-clauses

	7.2 The summary fragment
	7.3 Where Javadoc is used
	7.3.1 Exception: overrides

